Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aims.We aim to accurately measure the dynamical mass and distance of Cepheids by combining radial velocity measurements with interferometric observations. Cepheid mass measurements are particularly necessary for solving the Cepheid mass discrepancy, while independent distance determinations provide a crucial test of the period–luminosity relation andGaiaparallaxes. Methods.We used the multi-telescope interferometric combiner, the Michigan InfraRed Combiner (MIRC) of the Center for High Angular Resolution Astronomy (CHARA) Array, to detect and measure the astrometric positions of the high-contrast companion orbiting the Galactic Cepheid SU Cygni. We also present new radial velocity measurements from ultraviolet spectra taken with theHubbleSpace Telescope. The combination of interferometric astrometry with optical and ultraviolet spectroscopy provided the full orbital elements of the system, in addition to component masses and the distance to the Cepheid system. Results.We measured the mass of the Cepheid,MA = 4.859 ± 0.058 M⊙, and its two companions,MBa = 3.595 ± 0.033 M⊙andMBb = 1.546 ± 0.009 M⊙. This is the most accurate existing measurement of the mass of a Galactic Cepheid (1.2%). Comparing with stellar evolution models, we show that the mass predicted by the tracks is higher than the measured mass of the Cepheid, which is similar to the conclusions of our previous work. We also measured the distance to the system to be 926.3 ± 5.0 pc, obtaining an unprecedented parallax precision of 6 μas (0.5%), which is the most precise and accurate distance for a Cepheid. This precision is similar to what is expected byGaiafor its last data release (DR5 in ∼2030) for single stars fainter thanG = 13, but is not guaranteed for stars as bright as SU Cyg. Conclusions.We demonstrate that evolutionary models remain incapable of accurately reproducing the measured mass of Cepheids, often predicting higher masses for the expected metallicity, even when factors such as rotation or convective core overshooting are taken into account. Our precise distance measurement allowed us to compare predictions from some period–luminosity relations. We find a disagreement of 0.2–0.5 mag with relations calibrated from photometry, while relations calibrated from a direct distance measurement are in better agreement.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract We report the detection of 15 GHz radio continuum emission associated with the classical Cepheid variable starδCephei (δCep) based on observations with the Karl G. Jansky Very Large Array. Our results constitute the first probable detection of radio continuum emission from a classical Cepheid. We observed the star at pulsation phaseϕ≈ 0.43 (corresponding to the phase of maximum radius and minimum temperature) during three pulsation cycles in late 2018 and detected statistically significant emission (>5σ) during one of the three epochs. The observed radio emission appears to be variable at a ≳10% level on timescales of days to weeks. We also present an upper limit on the 10 GHz flux density at pulsation phaseϕ= 0.31 from an observation in 2014. We discuss possible mechanisms that may produce the observed 15 GHz emission, but cannot make a conclusive identification from the present data. The emission does not appear to be consistent with originating from a close-in, late-type dwarf companion, although this scenario cannot yet be strictly excluded. Previous X-ray observations have shown thatδCep undergoes periodic increases in X-ray flux during pulsation phaseϕ≈ 0.43. The lack of radio detection in two out of three observing epochs atϕ≈ 0.43 suggests that either the radio emission is not linked with a particular pulsation phase, or else that the strength of the generated radio emission in each pulsation cycle is variable.more » « less
An official website of the United States government
